

 After reading this chapter you will understand:

 About basic terms in C++
 The different data types in C++
 The different types of operators and expressions
 The control structures in C++, Conditional branching, looping and

unconditional branching

2.1 Basic terms in C++
2.2 Data types

2.2.1 Basic data types
2.2.2 User defined data types
2.2.3 Derived data types

2.3 Operators and Expressions
2.3.1 Operators
2.3.2 Precedence of operators
2.3.3 Expressions

2.4 Control structures
2.4.1 Conditional branching
2.4.2 Looping
2.4.3 Unconditional branching

2.5 Summary
2.6 Technical Terms
2.7 Model Questions
2.8 References

Lesson 2: C++ Basics

Objectives

Structure of the lesson

Token : The smallest individual units in a program are known as tokens.
C++ tokens are

 Keywords
 Identifiers
 Constants
 Strings
 Operators

Keywords have a special meaning in the language. They are reserved
identifiers and cannot be used as names for program variables or user-
defined variables.
e.g.: int, float, throw, switch ,.. etc.

Identifiers refer to the names of variables, functions, arrays, classes,
etc., created by the programmer.

Rules for naming the identifiers :
- Only alphabetic characters, digits and underscores are permitted.
- Name cannot start with a digit.
- Uppercase and lowercase are different(case-sensitive).
- Keyword cannot be declared as variable name.

Constants refer to fixed values that do not change during the execution.
They include integers, character, floating point constants and strings.
e.g.:

123 //decimal integer
12.34 //floating integer
37 //octal integer
ox2 //hexadecimal integer
“C++” //string constant
‘B’ //character constant

The data types can be categorized into 3. They are
 Basic or Fundamental data types
 Derived data types and
 User_defined data types.

2.1 Basic terms in C++

2.2 Data types

Basic data types are again divided into numeric and non- numeric data
types. There are six numeric data types and two non- numeric data types.
Out of the six numeric types, three are integer types and three are floating
types.

The various integer datatypes are short, int and long . The various floating
point data types are float, double and long double. The sizes and the
ranges of these data types are follows:

Type
name

Memory
used Range Precision

short

(short int)
2 -32768 to 32767 not applicable

int 4
-2,147,483,648 to –

2,147,483,647
not applicable

long(long

int)
4

-2,147,483,648 to –

2,147,483,647
not applicable

float 4
10E-38 to 10E18

(approximately)
7 digits

double 8
10E-308 to 10E308

(approximately)
15 digits

long

double
10

10E-4932 to 10E4932

(approximately)
19 digits

Note: Precision refers to the number of meaningful digits, including digits
in front of the decimal point.

C++ supports 2 non-numeric data types. They are char and bool. A
variable of type char can hold any single character from the keyboard.
The value that is stored in a variable of type char are placed within single
quotes. One byte of memory is needed for a char type data to be stored
in the memory. The data type can be of signed or unsigned char.

2.2.1 Basic Data Types

e.g: char c1 = ‘A’;

A new data type called bool has been included in C++. It returns a
boolean value, true or false with default values 1 and 0.

 e.g: bool x,y;
 x = true;

The user defined data types are structures, unions, class and
enumeration.

 Structures And Unions: Structures and unions are same as in C.
Structures provide a method for packing together data of different types
which are logically related.

Eg:

struct student
{ char name[20];
int rno;
float tmarks;
};

 struct student s1;

The keyword struct declares student as a new data type that can hold
three fields of different data types. These fields are known as structure
members or structure elements. The structure name, student can be
used to create variables of type student. s1 is a variable of type student
that has 3 member variables.The member variables can be accessed
using the dot or period operators.

strcpy(s1.name,”John”);
 s1.rno = 999;

Class: A class is a way to bind the data and its associated functions
together. It allows data and functions to be hidden if necessary, from
external use. Generally , the class specification has two parts.
They are

 Class Declarations: It describes the type and scope of its members.
 Class Function Definitions: It describes how the class functions are

implemented.

2.2.2 User Defined Data Types

General Form of the Class Declaration is:

class classname
{

private:
 variable declarations;
 function declarations;
public:
 variable declarations;
 function declarations;

};

The keyword class specifies that what follows is an abstract data type of
type classname .The body of the class is enclosed within braces and
terminated by a semicolon. The class body contains the declarations of
variables or data members and functions or member functions. These
functions and variables together called class members. They are grouped
under sections as private and public, which denotes the visibility of the
members. The private members can be accessed only within the class
and the public members can be accessed from outside the class.
e.g.:

class item
{
int numb;
float cost;

 public:
 void getdata(int a,float b);
 void putdata(void);
};

Once the class is declared, we create objects(variables) of that type by
using the classname.

e.g.: item x;
Here, x is an object of the class of item.

Enumerated Data Type: It is a user-defined datatype which provides
a way for attaching names to numbers. The keyword enum automatically
enumerates a list of words by assigning them values 0,1,2, and so on.

e.g.: enum shape{ circle,rectangle,triangle};
Here, circle is assigned an int value 0,rectangle to 1 and triangle to 2.

The derived data types are arrays , functions and pointers. We will be
discussing about arrays and functions in the next lessons. Pointers are
the variables, which directly refer to the value stored in the address it
points to.

e.g.: int *ip; //pointer to an integer
 ip = &y; //address of x assigned to ip
 *ip = 10;

C++ has a rich set of operators. All C operators are valid in C++ also . In
addition, C++ introduces some new operators . An expression is a
combination of operators, constants and variables arranged as per the
rules of the language. The different operators and expressions are
studied in this section.

The operators are used to manipulate the data during the processing. The
different types of operators are:
 Arithmetic operators

There are five arithmetic operators in C++. They are

Operator Purpose
 + Addition

- Subtraction
* Multiplication

 / Division
 % modulus

Syntax:
 operand1 operator operand2

2.3 Operators And Expressions

2.2.3 Derived Data Types

2.3.1 Operators

Every arithmetic operation returns a numeric value depending on the type
of the operands. For the % operator and / operator, the second operator
must be non-zero.

Unary Operators: C++ includes a class of operators that act upon a
single operand to produce a new value. Other than unary + and unary -,
there are two other operators ++ increment,-- decrement operator . These
operators can be prefixed(written before) or post fixed(written after) to
the operand.

The increment operator causes its operand to be increased by one and
the decrement operator causes its operand to be decreased by one. If the
operator precedes the operand, then the operand will be altered before it
is utilizes called as pre-increment or pre-decrement. If the operator
follows the operand, then the value of the operand will be altered after it is
utilized called post increment or post decrement.

Bitwise Operators : There are some bit wise operators for the
manipulation of data at the bit level. These operators are used for testing
or shifting the bits left or right. They may not be applied for float or double
values. The bit wise operators and their respective meaning are as
follows:

 Operator Meaning
 & bit wise AND
 | bit wise OR
 ^ bit wise XOR
 << shift left
 >> shift right
 ~ one’s complement

Relational Operators: C++ supports various relational operators to
compare one or more identifiers. The relational operators are:

Operator Meaning
< less than

<= less than or equal to
> greater than

>= greater than or equal to
== equal to
!= not equal to

The result of these expressions using relational operators will be boolean
values, true represented by 1 or false represented by 0.

Logical Operators: The logical operators are applied between operand
or relational expressions resulting in Boolean values true(1) or false(0).
The logical operators in C++ are

 Operator Meaning
 && logical AND
 || logical OR
 ! logical NOT

The logical expression yields a value one or zero, depending on the
values of the operators and operands according to the truth table given
below:

Truth table for And and OR operators:

Op1 Op1 Op1 && Op2 Op1 || Op2
Non zero Non zero 1 1
Non zero 0 0 1

0 Non zero 0 1
0 0 0 0

Truth table for NOT operator:

Op !Op
0 1
1 0

Conditional Operators: An operation that makes use of conditional
operators(?:) is known as conditional expression. These operations are
also known as tertiary operators.

Syntax:
 expr1?expr2:expr3

where expr1 is generally a conditional expression and is evaluated first. If
it is non-zero then expr2 is evaluated else expr 3 is evaluated.

e.g.:

 big =(a>b)?a:b;

Some other operators that are included in C++ are:

 operators symbols
stream output operator <<
stream input operator >>
Scope resolution operator ::
dynamic memory delete operator delete
dynamic memory allocation
operator

new

pointer-to-member operators

::* , ->* and .*

We have already studied about stream input and output operators in the
previous chapter. We will study the new and delete operators in the next
lessons. Now, we will study about the remaining operators.

Scope Resolution Operator: In C++, blocks and scope are used to
construct the program. The scope of the variable extends from the point
of declaration till the end of the block i.e., between {}. The same variable
names can be used in different blocks to have different meanings. A
variable declared inside the block is said to be local to that block. The
global version of a variable cannot be accessed from within the inner
block. So, a scope resolution operator :: is used , where it allows the
access to the global version of a variable.

Syntax:
 :: variable name

Program to demonstrate scope resolution operator

#include<iostream.h>
int x = 50;
void main()
{
int x = 10;
 {
 int x = 1;
 cout<<”x = “<<x<<”\n”; //prints x value local to the scope
 cout<<”::x= “<<x<<”\n”; //prints global x value
 } cout<<”x = “<<x<<”\n”; //prints x value local to the scope
 cout<<”::x= “<<x<<”\n”; //prints global x value
}

Output:

x=1
x=50
x=10
x=50

Referencing And De-Referencing Operators: The address operator &
or referencing operator assigns the address of the operand on the right
side to the pointer variable to its left.The indirection operator * or de-
referencing operator accesses the value of the operand pointed to by the
pointer variable.

e.g.: int x = 10,y;
int *p;

p = &x; //p stores the address of the location where x is stored
y= *p; //*p has the value of the variable to which p points to
cout<<”The value pointed by p is ” <<y;

Output: The value pointed by p is 10

sizeof Operator: The sizeof operator gives the amount of storage
required to store an identifier.

int k;
cout<<sizeof(k);

Output: 2

Typecast Operator:C++ permits explicit type conversion of variables or
expressions using the type cast operator.
Syntax:
 Typename(expression)
 Average = sum/float(i);

Operators in the same box have the same precedence. Operators in
higher boxes have higher precedence. Unary operators and assignment
operators are executed from right to left and have the same precedence.

2.3.2 Precedence Of Operators

Other operators that have the same precedence are executed from left to
right. The list is given from higher precedence to the lower precedence.

Precedence of operators are as follows:

:: scope resolution operator

. dot operator
 member selection
[] array indexing
() function call
++ postfix increment operator
-- postfix decrement operator

++ prefix increment operator
-- prefix decrement operator
! not
- unary minus
+ unary plus
* dereference
& address of
new
delete
delete[]
sizeof

* multiply
/ divide
%; remainder(modulo)

+ addition
-; subtraction

<< insertion operator(output)
>>; extraction operator

< less than
<= less than or equal
> greater than
>=; greater than or equal

== equal
!=; not equal

&&; and

|| ; or

= assignment
%= modulo and assign
+= add and assign
-= subtract and assign
*= multiply and assign
/=; divide and assign

Expressions combine operands, operators and constants to produce a
single value. There are different types of expressions like:

Constant Expression: They can have only constants values.

e.g.:10
 15+6/4.0

 y’

Integral Expressions: These expressions produce integer result after
implementing all automatic and explicit type conversions.

e.g.:X
 X * ’a’
 5 + int(2.0)
where X is an integer

Float Expressions: These expressions produce floating point results
after implementing all automatic and explicit type conversions.
Eg:

 X
X * y/10
5 + float(2)

where x and y are floating point values.

Pointer Expressions: These produce address values.
e.g.: &x

 ptr
 ptr + 1

where x is a variable and ptr is a pointer

2.3.3 Expressions

Relational Expression: These expressions results in a bool type values,
true or false.

e.g.: x<y
 a+b>100

Logical Expressions: These combine two or more relational expressions
using logical operators and result a bool type values.

e.g.: i<j && y == 5
 p == 3 || q >5

Bitwise Expressions: Bitwise expressions are used to manipulate data
at bit level.
 e.g.:x<<3;//shifts 3 bits to its left

Special Assignment Expressions: Chained assignment:

 A = (b = 5);
 Or
 A = b= 5;

First 5 is assigned to b, then to a.
A chained statement cannot be used to initialize variables at the time of
declaration.

Embedded Assignment:

x = (y = 20) + 10;
(y = 20) is an assignment expression known as embedded

assignment. The value of 20 is assigned to y and then the result 20+10 is
assigned to x.

Compound Assignment: Compound assignment operator is a
combination of assignment operator with a binary arithmetic operator.

p = p + 10;
can be written as
p+=10;

In high-level programming languages, flow of program execution may be
changed using certain control statements called control structures.

2.4 Control Structures

A control structure is a control flow statement that allows you to alter
the sequential flow.

 Control flow statements fall into three categories:

1. Conditional branching (or) Decision Making or Non-iterative
2. Looping or iterative or repetitive
3. Unconditional branching.

Conditional branching is the most basic control feature of any
programming language. It enables a program to make decisions, to
decide whether or not to execute a statement or a block of statements
based on the value of an expression. The expression may result in either
true or false value. Since the value of the expression may vary from one
execution to another, this feature allows a program to react dynamically to
different data.

C supports various types of conditional branching statements. The
following categories illustrate several conditional control structures.

 Simple if
 if ..else
 else if ladder
 Nested if
 Switch

Simple If: The simple if statement is wonderful decision making
statement and is used to control the flow of execution of a single or
multiple instructions.

The general form of “simple if” follows:
 If (condition/expression) Statement;
In this statement the given condition is tested
first and responds accordingly. If the result of
expression is true then the given statement is
executed. If the result is false the statement
cannot be executed.

Entry

Expres
sion

Statement

2.4.1 Conditional Branching

True

When multiple statements are to be executed using if control structure
then it may be referred as compound if.

Syntax:

if (expression)
 {
 statement-block;
 }
 statement-x;

The statement-block may be a single statement or a group of statements.
If the expression is true statement-block will be executed, other wise the
statement-block will be skipped and the execution will jump to the
statement-x.

Program to f ind biggest of two numbers.

#include<iostream.h>
void main()
{
 int a, b;
 cout<<"\n\t Enter A value : ";
 cin>>a;
 cout<<"\n\t Enter B value : ";
 cin>>b;
 i f (a>b)
 cout<<"\n”<<a<<” is Greater than “<<b;
 i f (b>a)

cout<<"\n”<<b<<” is Greater than “ <<a;
}

If_else: In if-else control statement there exists an extension of the
simple if statement. It allows the user to perform another block of
statements in case the condition result is false.

syntax :

if (expression)
 statement-x;
else
 statement-y ;

Here the expression is
evaluated; if the result of
the expression is a true
then statement-x is
executed otherwise
statement-y will be
executed.

 Program to check whether given number is even or odd
#include<iostream.h>
void main()
{
 int n;

 cout<<"\n Enter a number.. :";
 cin>>n;
 i f (n%2==0)
 cout<<"\n Given number is even":
 else
 cout<<"\n Given number is odd":

}

else-if Ladder: In else..if ladder number of conditions are checked
depending on the falsity of the previous condition. Literally, too many
conditions are evaluated in if..else ladder.

True

Entry

Expres
sion

statement x statement y

False

Flow graph

Syntax:

If <condition1>
 {

 }
 else if <condition2>
 {
 ------ True block 1
 }
 else
 {
 ------ False block
 }

In this, condition1 is checked and if it is true then its corresponding
condition is executed. If the condition is false then next condition is
verified. If all the given conditions are false then false block is executed.
Only one of all the available blocks gets executed. After the execution of
any one of the blocks, control is transferred to next statement after the
construct.

Program to find biggest of three numbers
#include<iostream.h>
void main()
{
 int a,b,c;
 clrscr();
 cout<<“enter three numbers:”;
 cin>>a>>b>>c;
 if(a>b)

 if(a>c)
 cout<<a<<” is big”;
 else

 cout<<C<<”is big”;
else if(b>c)
 cout<<b<<” is big”;
else

cout<<c<< “ is big “;
}

Decision Making With Nested If: A nested if control structure consists
of multiple if statements in one another. Here each if statement consists
of subsequent branching statement. Literally a nested if consists of one
if statement in another if statement. It is used when multiple conditions
are to be evaluated.

Syntax:

if(expression)
{

if(expression)
{

if(expression)
{

Here evaluations of expressions or conditions are based on the first
condition. If the first condition itself is false, then there is no way of
evaluating other conditions. At any level of expression the program
control may be altered.

Ex: Program Biggest of 3 numbers using nested if

#include<iostream.h>
void main()
{
 int a,b,c,big;
 cout<<”\n Enter the value of a : ";
 cin>>a;
 cout<<"\n Enter the value of b : ";
 cin>>b;
 cout>>”\n Enter the value of c : ";
 cin>>c;
 i f (a>b)
 i f (a>c)
 big = a;
 else
 big = c;
 else
 if (b>c)
 big = b;
 else
 big = c;
 cout<<"\nBiggest of three numbers is:”<<big;

}

switch: C provides a special kind of conditional control structure that acts
as an alternative to if..else ladder. When there are more conditions or
paths in a program, if-else branching can become more difficult. In such
situations switch may act better. The switch statement allows the user to
specify an unlimited number of execution paths based on the value of a
single expression. Each execution path is referred as a case.

However, all the cases should be unique. Each case must be terminated
by a ‘break’ statement. The ‘default’ case is not mandatory.

In a switch statement, there are four different keywords to be used:
 switch
 case
 break
 default

Though the switch control structure enables the user to improve clarity of
the program, it causes more errors. So, it requires more attention while
implementation.

Syntax:
 switch(expression)
 {
 case value1:

 statement;
 break;

 case value2:
 statement;

 break;
 :
 :
 :
 default :

statement;
 }

Among all the cases, only one case can be executed successfully
because each case is terminated by a ‘break’ statement.

 Program to accept two integer values and perform
arithmetic operation by gett ing the user input.

1) Addit ion 2) Subtraction
3) Mult iplication 4) Division
5) Exit .

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
void main()
{
 int a, b, c, ch;
 clrscr();
 cout<<"\n\t \ t \ t Enter two numbers : ";
 cin>>a>>b;
 cout<<“Enter your choice:”: l

cout<<“1)Addit ion\n2)Subtract ion”;
cout<<“\n3)Mult iplicat ion”;
cout<<”\n4) Division. \n5) Exit”.
cin>>scanf (“%d”&ch);

 switch (ch)
 {
 case 1:
 c = a + b;
 break;
 case 2:
 c = a - b;
 break;
 case 3:
 c = a * b;
 break;
 case 4:
 c = a / b;
 break;
 default :
 cout<<"\n Invalid option ";
 exit(0);

}
 cout<<"\n\t \ t \ t Result :”,c;
}

Some times, in a program, a statement or a block of statements need to
be executed repeated number of times. In such situations decision
control structures may not be useful, as they do not transfer the control
back. Hence the user may require another form of control structures,
which perform a group of instructions for a fixed number of times. Such
control structures are named as looping control structures. C language
provides three different iterative or looping structures.

 while loop
 do…while loop
 for loop

While: The while control structure executes a single or multiple
statements for repeated number of times based on a given condition. It
executes the statements as long as the given condition or expression
results in a true value. It terminates execution as and when the condition
is false.

Syntax:
 in it ia l izat ion statement;
 while(condit ion)
 {
 ---- --- -- -- ---

 Condit ion reachable Statement;
 }

F

2.4.2 Looping Structures

Here the condition is tested every time, it executes the block of
statements. The keyword while verifies the trueness and falsity of the
expression and responds accordingly. If the condition is false for the
first time the minimum number of iterations is 0 in while control structure.
It requires three statements in order to perform repetitive tasks.

They are

 Initialization statement
 Conditional statement
 Condition reachable statement

If any of the above statements is ignored then the while may not perform
well.

Program to print the numbers from 1 to 10

#include<iostream.h>
void main()
{
 int i;
 i=1;
 while (i<=10)
 {
 cout<<”n"<< i;
 i++;
 }
}

Do- While: C provides another form of while control structure i.e., do-
while control structure. In do-while control structure the statements in the
block get executes first, later on the condition is evaluated. Hence the
user can assume that the minimum number of iterations for do-while
control structure as 1, even if the expression or condition results in false
for the first time.

Syntax:
 Init ia l izat ion statement;

do
 {

--- -- --- -- -- -
 Condit ion reachable statement;

} while(condition);

Here the statements in the loop will be executed until the given
condition becomes false. The while statement should be terminated by a
semicolon (;) in do while.

 Print the numbers from 1 to 10.

 #include <iostream.h>
 void main()
 {
 int i;
 i=1;

do
{
 cout<< i++<<”\n”;
} while (i<=10);

 }

For Loop: C provides a more flexible form of looping control structure
that improves clarity of the code. It is nothing but for control structure.
Usually the for control statement is used to perform fixed number of
iterations.

The major difference between for and other looping structures is the
number of iterations. In case of while and do-while the number of
iterations are indefinite. The user may not predict the number of
iterations. On the other hand for specifies the number of iterations in the
statement itself.

Syntax:

for (init ia l izat ion; test condit ion; increment/decrement part)
 {
 Body of the loop;
 }

The initialization may contain single or multiple assignment statements. A
control variable is involved in this part of statements. The test condition
verifies the validity of the control variable for each iteration. Increment or
decrement part, increments or decrements the value of the control
variable in order to reach the test condition.

Program to print the numbers from 1 to 10.

 #include <iostream.h>
 void main()
 {
 int i;

 for (i=1 ; i<=10; i++)
 cout<< I<<”\n”;
}

Break and Continue statements:
Break:This statement takes control out of the switch
statement or loop structure. In other words, a break
statement takes the control out of the current block in
execution. The control is transferred to the statement that
follows the block.

Syntax:
 break;

Continue Statement :To skip a part of the body of the loop
in execution on certain condit ion and for the loop to be
continued for the next iterat ion continue statement is used.

Syntax:
 continue;

goto and label: C++ supports an unconditional branching statement
called goto. This goto is meant for transferring control from one part of
the program to another part a label is present. A label is a user-defined
word to where the control is supposed to be transferred. The given label
must reside in the same function and can appear before only one
statement in the same function. Although it may not be preferable to use
the goto statement in a highly structured language like C, there may be
occasions where the use of goto is desirable.

Syntax:
 goto label: label:
 ---------------- statement;
 ---------------- -----------------
 label: -----------------

statement; goto label:

example demonstrates the goto statement:
void main()
 {
 int x = 1;
 abc:
 cout<<x;
 x++;
 if(x <= 5)
 goto abc;
 }

2.4.3 Unconditional Branching

 The basic terms in C++ like token, keyword, identifier, constants are
studied here.

 The data types in C++: basic, user defined and derived data types are
discussed in detail.

 The different types of operators and expressions are also discussed in
this lesson.

 The different control structures in C++ like conditional, looping and
unconditional statements are studied. The conditional statements: if,
if-else, nested If and switch are studied in detail. Also focus is made
on three categories of loops, available in C++ language: while, do–
while and for loop. Usage of break, continue, goto and exit
statements, which are very useful in loops have been covered.

Expression: It is a combination of operators, constants and variables
arranged as per the rules of the language.

Operator: A symbol that represents an action to be performed.

Manipulator: A data object that is used with stream operators. It causes
a specific operation to be performed on the stream.

Scope resolution operator: The operator that is usually used to indicate
the class in which the identifier is declared.

Type casting: To convert a variable from one type to another type by
explicitly.

Union: A data type that allows different data types to be assigned to the
same storage location.

 2.5 Summary

2.6 Technical Terms

1. Explain the different data types in C++ ?
2. What are the different operators in C++ ?Explain.
3. Explain the precedence of operators.
4. How many types of expressions are there? What are they ?
 Explain them ?
5. Explain the different control structures in C++ with example ?

Object-oriented programming with C++
 by E.Bala Gurusamy

Problem solving with C++

by Walter Savitch

Mastering C++
by K.R.Venugopal,

Rajkumar Buyya, T.Ravi Shankar

AUTHOR:

M. NIRUPAMA BHAT, MCA., M.Phil.,
 Lecturer

Dept. Of Computer Science
 JKC College

GUNTUR.

2.7 Model Questions

2.8 References

